Approaching the Summarization of Online News Article
Discussions with Topic Clusters based on Deep Neural Networks

Marvin Bornstein

Willi Gierke

Tobias Nack

Hasso Plattner Institute
Prof.-Dr.-Helmert-Str. 2-3
Potsdam, Germany
{firstname.lastname}@student.hpi.de

ABSTRACT

We propose an approach to select the most suitable comments sum-
marizing discussions of online news articles. Our approach focuses
on finding different topic clusters within a single discussion, which
we can then summarize by finding representative comments. This
ensures that the final summary covers a wider variety of topics
discussed. The topic clusters are created by using the density based
clustering approach DBSCAN on embeddings generated for the text
of every comment using a neural network based on bi-directional
LSTMs. We train the network using a triplet loss, forcing the em-
beddings of comments from the same article closer together com-
pared to comments from different articles. With this approach, we
compare similarly to the commercial summarization tool SMMRY
judging by a user study with 12 participants.

KEYWORDS

Natural Language Processing, Discussion Summarization, Triplet
Loss, Clustering

1 INTRODUCTION

Online news have become the most important source of information
for the majority of citizens [17]. These news sources often offer a
comment section accompanying their articles for users to engage in
further discussions. Especially for large international news sources
and highly polarizing topics, these discussions can become too long
to effectively comprehend for most readers, which makes them less
likely to take part. Therefore it would be helpful to automatically
provide a summary for the comment section, supporting a reader
in their decision to read further and contribute their own thoughts.
The generation of such a summary for a collection of comments
differs from other more common summarization tasks on contin-
uous texts such as news articles or scientific papers. The variety
of comments written by different authors is hereby more likely to
cover broader range of topics. Also, conversations between users
are likely to experience a topic drift. To capture this, we propose an
approach to cluster the comments into different topic groups using
unsupervised machine learning techniques. These clusters can then
be summarized separately. The machine learning techniques are in-
spired by current state of the art literature for text mining, language
modeling and other deep learning tasks. Our main contribution is
the collection of the different techniques and creation of a coherent
pipeline specifically orientated for online newspaper discussions.

2 RELATED WORK

Given a set of comments to an article, it is desired to generate a
summary that preserves the most important information. Classical
approaches are based on the relative importance of words in the
document as measured by the TF-IDF. As an example, LexRank [5]
finds the most important sentences by using the eigencentrality
of a graph that is induced by the similarity matrix between the
TF-IDF vectors of the sentences. Another well-known tool from the
industry is SMMRY!. While the underlying algorithm has not been
disclosed, the inventors state that it ranks sentences depending on
the relative occurrences of the words contained in the sentences,
which indicates that TF-IDF vectors are used as well. These ap-
proaches are intended to work with coherent text and are therefore
not necessarily applicable to our use cases. Another disadvantage
of these approaches is that the TF-IDF embedding embodies no
semantic relationship between the words. Word embeddings like
FastText [2] overcome this obstacle by encoding words with similar
meaning in a similar vector representation. FastText breaks words
into n-grams for training. Thus, words that are missing as a whole
from the training data can also be embedded. The representation
of a word is then the sum of its n-gram representations. While the
embedding choice is an important preprocessing step, the actual
learning algorithm is at least as important.

Recent advances in deep learning have shown promising results
for learning representations of hierarchical data such as images
and text. Thus, a large corpus of recent work exists that uses deep
learning for natural language processing problems. For instance,
convolutional neural networks (CNNs) [15] have shown excellent
performance on various tasks on text such as sentence classification
[11]. More recently, bidirectional long short-term memory networks
(BILSTM) [9] have been used to achieve exceptional results on tasks
such as named entity recognition [10, 13]. To free architectures
for natural language generation from their fixed-length internal
representation constraint, attention has been introduced by Bah-
danau et al. [1]. These concepts have been jointly used for natural
language generation to e.g. sum up a headline and a sentence of an
article in a shorter sentence [8, 16, 20, 22, 24]. Unfortunately, the
algorithms need a large corpus of labeled training data which is
unfeasible in our case. Therefore, we decided to only show the most
informative comments to the user instead of generating natural
language.

To display only the best comments, it is necessary to identify
the properties of such comments. It has been shown that editor
picks, discussion comments highlighted by editors, are e.g. critical

!https://smmry.com/

https://smmry.com/

Nobody
needs

2

drones i A

<pad> \ /

Drones

not
fly

TN

rocks L

should
— —]

<pad>
<pad>

FastText

URL Token BILSTM

Comment

Embedding

BPR triplet loss DBSCAN

Figure 1: Schematic pipeline of our algorithm. Sequence encoding of comments, which is trained to minimize a triplet loss

and clustered using DBSCAN.

and address different topics [4, 12]. These could be detected via
handcrafted features such as discourse indicators [14]. However,
these indicators are rarely used in comments and as such do not
scale. Farrell et al. [7] incorporate hand-crafted features and the dis-
cussion hierarchy to create a summary by selecting the most salient
comments. Due to the manually created features, the scalability of
the approach is very limited. As can be seen, unsupervised discus-
sion summarization using word embeddings and representation
learning have not achieved much attention so far.

3 ALGORITHM

In order to deal with the heterogeneous nature of a discussion,
we propose a pipeline that can be seen in Figure 1 which finds
homogeneous clusters within a discussion. We can then use a sum-
marization algorithm to find the central comment of a cluster to
represent it. Our pipeline starts by finding an appropriate embed-
ding of every comment in a representation space using a sequential
machine learning model. These representations can then be used
together with classical clustering approaches to find the homoge-
neous groups in a discussion.

3.1 Comment representation

Word representation models, such as FastText [2], allow us to embed
word fragments, words or sequences of words into an k-dimensional,
real representation vector. These vectors are optimized to encode
word analogies and similarities and are trained on generic text
data. Encoding every comment in a discussion that way does not
necessarily capture the domain specific topics or stance.

Thus, we extend this word level embedding to a comment level
embedding by feeding the FastText embeddings trained on a large
online news comment corpus into a sequence model, e.g. a convo-
lutional or recurrent network. For our final implementation, we
decided to use a BILSTM model, which yielded the best results in
our later evaluation (cf. outlier detection in Section 4.1).

Since we do not have a labeled data set for our task, we turn the
unsupervised problem into a semi-supervised one and optimize our
sequence model to capture topic or discussion-specific information.
The objective is to encode comments to the same discussion closer

to comments from different discussions.

Lipr =1-0(a’p-a'n) M
We minimize the triplet loss [18, 21] in Equation 1, where a,p,n €
Rk are the anchor, positive and negative k-dimensional representa-
tion vectors of a comment and o is the sigmoid function. Represen-
tation vectors are the element-wise average of the last outputs of
the forward and backward LSTM. The anchor and positive example
are drawn from the same discussion, the negative from another.
This BPR triplet loss operates on similarities comparable to cosine
similarity. This means that the norm of the representations is not
constrained, but the representations pairwise angles are. We ex-
perimented with an Euclidean distance in the loss, but it would
always collapse the embedding space to a singularity during train-
ing. We believe this is due to the high dimensional representation
space, in which Euclidean distances do not differ much. It is yet to
show whether a task specific triplet mining strategy would improve
training.

Intuitively, the model distinguishes comments by topic or opin-
ion and separates them into homogeneous groups. Every generic
comment that fits multiple discussions may fall into a noise region
in the representation space. We assume this separation to generalize
to comments within a discussion.

3.2 Discussion groups

Using the introduced comment embeddings that naturally group
comments, we can use traditional clustering algorithms to identify
these groups. Note that our objective in Equation 1 does not mini-
mize Euclidean distance. Thus we use the density-based algorithm
DBSCAN [6] on pairwise cosine similarity to cluster comments
within a discussion. DBSCAN allows to find a variable amount
of clusters and identify outliers. This means that we account for
comments that are too generic, like "Well done." or "First!", and the
fact that topics can have varying amounts of subtopics or stances.
We automatically optimize DBSCAN's hyper-parameter € for every
article to maximize the number of clusters. We achieved better
clustering results when we reduced the dimensionality of our em-
beddings with PCA [23] before fitting DBSCAN. We think that this
implies that our sequence model encodes redundant information

Figure 2: Cosine similarity matrix of discussion without
noise comments and ordered by DBSCAN grouping. Clusters
appear to be quite homogeneous, i.e. have few similarities
across clusters.

which would worsen the performance of clustering approaches that
generally prefer to work in low-dimensional space.

3.3 Group representative

The cosine similarity matrix in Figure 2 shows quite independent,
homogeneous groups after clustering the comments. We choose
cosine similarity to comply with the embedding space, which op-
timized the BPR triplet loss. Within each group, we assume the
most central comment to be a good representative, which has been
a successful approach in document summarization. Within each
cluster, we compute the similarity matrix and score sentences by
the eigencentrality, in accordance to Erkan and Radev [5]. Eigen-
centrality not only captures the local similarity of one comment to
another, but also if their similar comments are itself very similar
within the cluster. This results in a proper measure for centrality
and a good way to score each comment’s importance in the overall
discussion.

3.4 Implementation details

We built our models in Python [19] by using the Keras library [3].
FastText embeddings were trained on our dataset with 50 embedding
dimensions. We limited the sequence length of our BiLSTM to 100
words, zero-padded shorter comments and cut larger comments
after 100 words. Our CNN model consists of 1D convolutions with
kernel sizes of 3, 4 and 5. We generate 100 filter maps for each
kernel size. A max-over-time pooling layer reduces the output to a
300 dimensional representation vector. This architecture is inspired
by the work of Kim [11].

Our BiLSTM model averages the last output of both single LSTM
models which have 124 cells each and tanh activation. We added
a fully connected layer with ReLU activation to reduce the 124
dimensional output to 100 dimensions.

4 EVALUATION

We evaluated our approach on a dataset of around 61 million com-
ments crawled from the English newspaper The Guardian. The
comments are taken from articles published between 2005 and 2017.
Our model was trained on the first 20 million comments and all
other evaluation methods use the last 10000 comments to avoid
testing our model on any before seen comments or articles. The

methods that we use to evaluate our approach are an outlier de-
tection and a user study. Both test different properties, namely the
quality of the learned representation and the quality of the complete
summary.

4.1 Outlier detection

This technique is based on artificially inserting comments from
another article and checking whether our approach spots them
as outliers or a cluster that is only coherent within itself. Since
different articles are very likely to address different topics, we see a
good performance in separating the comments of the articles as an
indication of our approach actually separating by topics. We tested
this using 100 different articles that were not part of the training
set. Every article has between 25 and 250 comments and depending
on the number of comments we add between 5 and 50 randomly
selected comments from one different article of this set as artificial
noise. One should note that the original articles also have comments
that should be classified as outliers, if they are for example either
completely off-topic or short answers to other people without any
further content. That means it is not necessarily desirable to have
no comments from the original article found as outliers, which
is also in line with our results. In comparison, the chance of two
articles with the same topics in the discussion being combined is
relatively small, which makes it desirable for the noise comments
to be classified as outliers with a rate as close to 100% as possible.

Approach H Real comments Noise comments
Baseline Model 45% 66%
CNN Model 31% 72%
BiLSTM Model 28% 84%

Table 1: Percentage of comments classified as outliers

Table 1 shows the results of this experiment comparing three
different models giving the mean percentage of outliers for all
tested combinations of article and noise. The results of the different
combinations do not significantly deviate from each other. The
three models only differ in the way the embedding of a comment is
generated, both the word embedding beforehand and density based
clustering afterwards are consistent with our pipeline. The baseline
model uses the average of all word embeddings in the comment
as representation for the clustering. Both the CNN model as well
as the BiLSTM model were trained as previously described using
the BPR triplet loss. For all three models we can see that comments
inserted as noise are more likely to be classified as outliers compared
to the comments of the original article. This shows that all three
models already include general information about the topic. Both
embeddings with neural networks conclusively beat out the baseline
model that just uses the information from the word embedding
indicating that training with the BPR triplet loss has a positive
effect on our task. We can also observe that the performance for
the CNN model and BiLSTM model is relatively similar for the
comments of the original article. However, the BILSTM model is
significantly better in correctly spotting the noise comments as
outliers, which is why we decided to choose the BiLSTM model
in our final approach and use it for the user study. We think that

0.5

normalized score

0.0

+

SMMRY Evolutionary Algorithm Our Approach Random

Figure 3: Boxplot of the normalized ratings for every ap-
proach. The median scores do not differ much compared to
the deviation.

the CNN model might perform better if further techniques such as
attention would have been used.

4.2 User study

As a second technique to evaluate the summarization quality of
our approach we ran a user study. The participants evaluated the
summarization quality of four different approaches giving us the
opportunity to compare them relative to each other. Apart from
our described approach and the one of another tutorial group us-
ing an evolutionary algorithm we included SMMRY and selecting
random comments as baselines. To save the subject group reading
the entire articles and discussion sections, we only displayed the
four proposed summaries. An accompanying guideline describes
appropriate summaries as e.g. short, expressive, serious and under-
standable as inspired by Diakopoulos [4], Kolhatkar and Taboada
[12].

In total we collected 902 scores for 43 different articles from
12 computer science students. We normalized the scores for any
participant to better compare people that generally score with
higher or lower grades and excluded all articles that had been
labeled by less than three participants. All four approaches are
scored relatively similarly with neither getting a real edge over the
other competitors. Figure 3 shows that the results of all approaches
can vary relatively widely depending on the underlying article
with our approach showing the most stable scores. To gain further
insights, we manually analyzed the created summaries of articles
on which we either performed exceptionally well or very badly.
We could not gain much insights from the articles on which we
performed well. However, we found that the length of badly rated
summaries varies greatly from our average summary length of
around 261 words. Summaries that have been rated badly are either
very short with around 30 to 40 words or very long with between
650 to 850 words.

5 CONCLUSION

In this work, we have addressed the problem of summarizing an
online discussion by selecting the most suitable comments in an un-
supervised manner. Technically, we have proposed an end-to-end
trainable approach based on several state of the art components.
Qualitative experiments have shown that the approach is able to
learn an embedding that separates discussions with different topics.
However, the results of our user study are not convincing, which
we think is most likely related to the choice of comments repre-
senting the different clusters. This indicates that in future work
one should concentrate on finding better techniques or heuristics
for choosing appropriate comments. After the analysis of our user
study, we believe that relatively easy approaches such as limiting
the maximum and minimum length of the chosen representatives
could already greatly improve the quality of our summaries.

REFERENCES

[1] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly

Learning to Align and Translate. CoRR, abs/1409.0473, 2014.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching Word Vectors

with Subword Information. Transactions of the Association for Computational

Linguistics, 5:135-146, 2017.

[3] F. Chollet et al. Keras, 2015.

[4] N. Diakopoulos. Picking the NYT Picks : Editorial Criteria and Automation in
the Curation of Online News. 2015.

[5] G.Erkan and D. R. Radev. Lexrank: Graph-based lexical centrality as salience in
text summarization. Journal of artificial intelligence research, 22:457-479, 2004.

[6] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A Density-based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of
the Second International Conference on Knowledge Discovery and Data Mining,
KDD’96, pages 226-231. AAAI Press, 1996.

[7] R. Farrell, P. G. Fairweather, and K. Snyder. Summarization of discussion groups.
In Proceedings of the 10th international conference on Information and knowledge
management - CIKM01, page 532. ACM Press, 2001.

[8] J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional
Sequence to Sequence Learning. CoRR, abs/1705.03122, 2017.

[9] A. Graves, S. Fernandez, and J. Schmidhuber. Bidirectional LSTM Networks for
Improved Phoneme Classification and Recognition. Technical report, 2005.

[10] Z.Huang, B. Research, W. Xu, and K. Y. Baidu. Bidirectional LSTM-CRF Models
for Sequence Tagging. Technical report, 2015.

[11] Y. Kim. Convolutional Neural Networks for Sentence Classification. CoRR,
abs/1408.5882, 2014.

[12] V. Kolhatkar and M. Taboada. Using New York Times Picks to Identify Construc-
tive Comments. In Proceedings of the 2017 EMNLP Workshop: Natural Language
Processing meets Journalism, pages 100-105. Association for Computational Lin-
guistics, 2017.

[13] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural
Architectures for Named Entity Recognition. Technical report, 2016.

[14] J. Lawrence and C. Reed. Combining Argument Mining Techniques. In Proceed-
ings of the 2nd Workshop on Argumentation Mining, 2015.

[15] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[16] R.Nallapati, B. Zhou, C. N. dos Santos, C. Gulcehre, and B. Xiang. Abstractive
Text Summarization Using Sequence-to-Sequence RNNs and Beyond. CoRR,
abs/1602.06023, 2016.

[17] N. Newman, R. Fletcher, A. Kalogeropoulos, D. A. L. Levy, and R. Kleis Nielsen.
Reuters Institute for the Study of Journalism / Digital News Report 2018.

[18] S.Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian
personalized ranking from implicit feedback. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, pages 452-461. AUAI Press, 2009.

[19] G. Rossum. Python Reference Manual. Technical report, Amsterdam, The
Netherlands, The Netherlands, 1995.

[20] A. M. Rush, S. Chopra, and J. Weston. A Neural Attention Model for Abstractive
Sentence Summarization. CoRR, abs/1509.00685, 2015.

[21] F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A Unified Embedding for
Face Recognition and Clustering. CoRR, abs/1503.03832, 2015.

[22] A. See, P.]. Liu, and C. D. Manning. Get To The Point: Summarization with
Pointer-Generator Networks. CoRR, abs/1704.04368, 2017.

[23] M. E. Tipping and C. M. Bishop. Probabilistic Principal Component Analysis.
Journal of the Royal Statistical Society, Series B, 61(3):611-622, 1999.

[24] W.Yin and H. Schiitze. Attentive Convolution. CoRR, abs/1710.00519, 2017.

[2

	Abstract
	1 Introduction
	2 Related Work
	3 Algorithm
	3.1 Comment representation
	3.2 Discussion groups
	3.3 Group representative
	3.4 Implementation details

	4 Evaluation
	4.1 Outlier detection
	4.2 User study

	5 Conclusion
	References

