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1 Introduction to the Internet of Things

Humans have been using lots of devices and gadgets to ease and improve their
daily life. This includes light and heating to feel comfortable, kitchen equipment
for cooking, cars, trains and planes for transportation, medical devices, like pace-
maker, for regaining the ability of living as well as computers and smart phones
as access to information and entertainment.

1.1 IoT as a novel paradigm
Because of the increasing amount of devices and overhead of controlling them,
the idea of smart environments arose. Devices should adapt to how they are
used and remove tedious control from the user to an intelligent managing entity
or the device itself. The Internet of things (IoT) is a novel paradigm that is
hoped to pave the way for smart environments by integrating several technologies
and communication schemes [1]. The fundamental idea is to equip each device
with radio communication, tags and sensors, make them uniquely identifiable
and interconnect them with their environment, like neighboring devices. Making
them interact with each other and cooperate to reach common goals.

IoT is included by the US National Intelligence Council in the list
of six “Disruptive Civil Technologies” with potential impacts on US na-
tional power [2]. NIC foresees that “by 2025 Internet nodes may reside in
everyday things – food packages, furniture, paper documents, and more”.
[3]



1.2 Properties and challenges of IoT

Most of the ideas around IoT involve lots of sensors and actuators. They could
be measuring energy consumption or water plants. For many tasks, they are
required to be really small and keep working without power supply for a while.
So the devices need to work with very restricted resources and this is what most
people immediately think of IoT. However, there is much more to it. Think of
the free market and all the different parties that want to sell and manufacture
IoT devices. The landscape of products will vary hugely. Vasilomanolakis et al.
[4] present the following 4 challenges:

Uncontrolled environment Devices can be mobile, i.e. they move around.
This means that they can loose their network connection and they cannot be
supplied with power by cable. As they could be installed in public space, attack-
ers may physically access or damage devices.

Heterogeneity There are lots of areas where IoT can be employed and by
digitization of current processes and companies, a huge variety of tasks need
to be addressed. Eventually, this leads to a multitude of “things” that can all
come from different manufacturers. Interoperability and compatibility gains im-
portance.

Scalability The huge amount of nodes with high interconnectedness can be
too much for centralized infrastructures. Scalability will be so important, that
current approaches need to change or cannot be used anymore.

Constrained resources Restrictions in size and energy consumption will limit
the available hardware resources. This is not only a step back in terms of compu-
tational power, but also an significant aspect for radio hardware and protocols.
Battery technology is limited and anti proportional to physical size.

1.3 IoT design ideas

To account for all the requirements, there are some design ideas and technolo-
gies – e.g. adding additional layers of hierarchy. Sensors and actuators may be
controlled by a managing node and they communicate on low energy hardware
with special protocols. Another idea is to design multi-hop networks. The man-
aging device, however, can implement more demanding standards and protocols,
such as the current TCP/IP stack. Standards need to make sure to implement
an abstraction layer between all the different devices and the user’s task should
be to compose IoT services. Today, there are only few accepted standards de-
veloped and implemented – most of the vendors have their own protocols and
requirements. In combination with economic pressure to release new products
as fast as possible, there may be increased potential for security vulnerabilities.



2 Related work

Network cameras as embedded devices that are connected to the Internet in high
numbers and have a potential privacy impact are interesting hacking targets – for
researchers and fraudsters alike. Past attacks on such devices include concepts
as simple as scanning the Internet for exposed camera web interfaces and brute
forcing access with default credentials. Results are presented on various web
pages 1 that collect open or badly secured camera interfaces so they can be
viewed by the visitors of said pages. Thereby the attack vector of weak passwords
is the same as for Mirai with the difference just lying in HTTP instead of telnet.

Many security researchers have also looked at IP cameras. They mostly focus
on exposed web and RTSP interfaces and are not limited on the cheapest vendors
(e.g. the Hikvision research of Core Security)[5]. Such interfaces can be Internet
exposed, unknowingly to the user, thanks to UPnP functionalities and automatic
port forwarding [6].

Most recently, Pierre Kim discovered an authentication bypass in the GoA-
head web interface that is or was used in network cameras of the majority of
vendors [7]. Combined with an already known command injection this could be
used for remote exploitation.

This command injection was found by Zoltan Balazs and enabled finding a
telnet backdoor account. The same research also includes first looks into a cloud
based UDP protocol.[8]

As past research mostly focused on Internet exposed web interfaces and our
device (running the latest firmware version) only shows left over traces of a
HTTP server and does not offer a ftp functionality, we focused our research on
new ways of exploitation and the UDP cloud protocol.

Also, the premium vendor Hikvision is discontinuing his dynamic DNS ser-
vice while transferring to a non-IP-based solution 2, so we believe these are the
functionalities the whole industry is heading to.

3 Security concerns and implications

The Internet of things with it’s novelty and special properties (see Section 1.1)
introduces new security challenges while having a big potential impact if com-
promised.

3.1 Security challenges in the Internet of things

The need for low energy consumption and limited computation power can elim-
inate the possibility to use asymmetric cryptography [9]. This can prevent the
use of existing trust structures like the public key based ecosystem of TLS cer-
tificates and certification authorities.
1 E.g. https://www.insecam.org/
2 http://www.hikvision.com/en/faq_81.html



Symmetric keys that are on the device may be extracted which can allow man
in the middle attacks or the creation of malicious firmware files. An example for
this are Ronen et al. who extracted the AES firmware key out of a Phillips Hue
smart lamp using sophisticated power analysis [10].

Providing a firmware update mechanism is vital to patch potential security
vulnerabilities, because most devices are still in active development and not
extensively tested. With the potential high number of devices, this has to scale
well [4] while it should not need any advanced user interaction as the devices are
used by non-technical users.

Also, as smart devices may be employed in public space, the attackers ability
to physically access his target devices may need to be considered. [4]

A broad selection of different devices, manufactures and standards makes it
hard to keep track of security vulnerabilities and patch statuses.

3.2 Impact of compromise

In the future, IoT devices may be integrated in most parts of our life, be it
door locks, fridges, home control systems, smart energy devices or traffic control
sensors. For the end user this may enable privacy violations, because an attacker
could gain information and potentially control about every aspect of his victims
life.

For state-level actors this could introduce new ways to monitor, spy on,
manipulate and oppress own or foreign citizens.

The sheer number of IoT devices makes them interesting targets for fraud-
sters. The compromise of one device type can enable the creation of huge bot
nets that may be used for commercial DDoS attacks like they are done on the
basis of Mirai.

Mirai powered attacks against the web site of journalist Brian Krebs 3 with
a bandwidth of more than 620 Gbps introduced the content delivery network
Akamai to a new size of DDoS attacks. Although their biggest attack experienced
to this date was close to half the size with 363 Gbps, the Mirai attacks were – in
contrast previous attacks – not amplified via DNS or NTP [11]. The same bot net
code was also used in attacks against the DNS provider DynDNS which resulted
in many major web pages (i.e. their domain name records) being inaccessible in
big parts of the United States and other parts of the world. [12]

Other destructive consequences of hacks are demonstrated by the Phillips
Hue research of Ronen et al.: because of their mesh network communication, the
infection of one smart lamp can be escalated to smart lamps of a whole city if
their density is high enough. By simultaneously turning them off and on again
an attacker could stress the city’s power grid with a power outage as a potential
consequence[10]. With IoT devices being employed in infrastructure like traffic
systems and the power grid, one can imagine incredibly damaging attacks, e.g.
in combination with black mailing attempts.

3 https://krebsonsecurity.com



4 IoT Security case study - audit of a network camera

4.1 Motivation for choosing the camera

The Mirai bot net showed, how many insecure devices there are. We could only
focus on one device and IP cameras have made up most of the bot nets de-
vices. Also, IP cameras often come with Linux, quite good hardware and work
on common TCP/IP protocols. Although this is not the vision of IoT, it is very
common, because it allows smartness without too much new development. Also,
smart home devices like lamps usually rely on managing devices and have a more
complex setup. And since there are not many global standards or vendor still
implement their own, analysis results may not apply to other vendors or prod-
ucts. Thus, network cameras are quite interesting targets at the moment. With
unauthenticated telnet access being an easily patchable vulnerability, we wanted
to find out whether other fundamental flaws in the design and implementation
of IP cameras exist.

When looking at available camera manufacturers and models, a lot of them
seem similar (see Fig. 1). The same applies for the management apps (see Fig. 2).
This means, they are either from the same company or subsidiaries to have a
higher market share or form other companies, but share components and imple-
ment the same standards. We assume, that some of the security vulnerabilities
apply to several of these devices.

4.2 Feature overview and setup of the Sricam

In the eyes of a user, the cameras offer similar features. They include a camera,
a microphone and a speaker. It can record audio and video that one can watch
on the smart phone from everywhere over the Internet. It also has an infrared
sensor and infrared LEDs to enable night vision. It can detect motion and notify
the user by sending an email. The user can record their voice and let the camera
play it.

The initial setup and all other settings must be set using the app. In order
to use the app, the user needs an account and an email address. After the
login, the user can add devices, i.e. cameras, to the account. The camera needs
to be powered on and connected to the network by Ethernet. It has a default
password, which the user is recommended to change. However, changing the
default password can also be skipped. After the device is added to the account
and visible in the app, the user can select the WiFi network it should use. The
camera also offers the following settings:

– changing the time
– setting the video format and recording volume
– adding visitor passwords / changing the main password
– IP and DNS settings
– motion alarms: email, buzzer alarm, motion detection settings
– recordings to a SD-card



Fig. 1. A subset of network IP cameras on eBay5. Looking alike, having similar features
and product designs

Fig. 2. Apps in the Apple App Store and apps by the same developer of the Sricam
app



– labeling the recorded area
– storage settings
– device update

4.3 Implementation analysis and device reconnaissance

As for the hardware, the camera features an Ethernet port, a microSD slot
and DC power interface. Dismantling the camera reveals a Grain GM8135S6

SoC with a 32-bit ARM CPU and 512 MB DDR RAM (see Fig. 3). It also has a
serial interface, that we connected to using a serial to USB adapter and picocom7

software (see Fig. 4).

Fig. 3. System on chip of the camera. The three ports marked with an arrow provide
the serial interface.

Software-wise, the camera runs a BusyBox Linux and includes telnet, which
usually does not run. However, via the serial shell we added the execution of
the telnet daemon to an initialization script in order to have easy shell access.
Almost all of the camera logic is implemented in a 32-bit executable, called npc.
The camera uses HTTP to check for new firmware versions and downloads them
via HTTP. Streaming the live camera video is based on RTSP. All other control
commands from the app are sent over UDP. When the app and the camera are
communicating outside the same local network, the app sends the packets to an
API server who relays them to the camera. This will even work if the camera
6 http://www.grain-media.com/html/8136S_8135S.htm
7 https://github.com/npat-efault/picocom

http://www.grain-media.com/html/8136S_8135S.htm
https://github.com/npat-efault/picocom


Fig. 4. Connecting to the boards serial interface. Login as root without credentials.

is behind a router with a firewall. We will describe the communication in more
detail later, the camera basically keeps the UDP connection and NAT translation
open by regularly contacting the API servers. The app uses UDP for the camera
communication and HTTP to authenticate against the API servers. Most of the
information, such as all devices and WiFi passwords are sent to and stored on
the API server for the user account.



4.4 Attack surface and audit concept
We want to test the security of the camera from different angles. An attacker
usually has one of two goals in mind: stealing sensitive information or execute ar-
bitrary code on the remote system. There are other goals in information security,
but these two are the most severe. Additionally, there are different conditions
for an attacker. The two that we focused on, are that one has control over the
network or that one has not. By control over the network we mean being a node
in between the communicating partners (i.e. MITM ). While this is an easy posi-
tion for exploitation and manipulation, it also is not the standard case. However,
there are ways for an attacker to get into the position, so any system security
needs to also cover this.

The attack surface matrix in Table 1 reflects these cases. We checked each box
step by step and, consequently, we will structure the next sections accordingly.

Information leaks,
privacy violation

remote code
execution

No
network
control

– Authorization against
Sricam servers

– Authorization against
camera

– Exploit camera
functionalities (e.g. buffer
overflow in send mail alarm
function)

Network
control

– Sniffing camera feed /
credentials

– Sniffing non-camera secrets
(WiFi passwords, ...)

– malicious software update

Table 1. Attack scenarios for different prerequisites and goals.

4.5 Information leak and low encryption
Starting with the lower left box of the matrix in Table 1, we investigated what
kind of information are sent. Using the setup shown in Fig. 5, we found out,
that the app-server-communication is mostly HTTP (for login, version checks;
the same for camera updates). The communication between app and camera is
mostly UDP and follows a proprietary protocol. When the server acts as a relay
server, the app and the server also talk UDP. In general, most of the messages
are unencrypted. This includes the camera feed, control commands and even the
login credentials.

During setup of the camera and when configuring the WiFi, the camera sends
the WiFi password to all API servers in plain text. Fig. 6 shows all of the involved
servers, their IP and their location.



Fig. 5. Laptop acts as AP for both the smart phone app and the camera. It runs
Wireshark and BurpSuite to see and alter TCP/IP packets.

Host name IP address location
{api1, p2p1}.videoipcamera.cn 101.1.17.22 Hongkong
{api2, p2p2, upg, upg1}.videoipcamera.{com, cn} 218.30.35.92 Shenzen
{api3, p2p3}.videoipcamera.cn 220.231.142.137 Shenzen
{api4, p2p4}.videoipcamera.com 146.0.227.241 Romania

Fig. 6. All of the companies servers and which domains point to them.

Section 4.2 mentions the motion detection email alarm feature. In order for
it to work, the user has to provide an email account, i.e. the SMTP server IP
address as well as the login credentials. The camera also sends this data to the
API server. This time, however, it encrypts the password using DES and, as
Fig. 7 shows, with a static key that can be extracted from the Android app.

Fig. 7. Decompiled Java app code (using jadx-gui) showing a hard-coded key.

4.6 Deploy malicious firmware
Information leaks and privacy violations are nice, but we really want to get into
the camera. To do that, we try to get our own firmware onto the device by
altering the update process. In general, this includes three steps:

1. get the camera’s firmware
2. dissect the firmware, what it does and how it works
3. change the firmware so that it is still valid, but contains a backdoor
4. alter the update process to let the camera install the changed firmware



Getting the firmware After the user tells the camera to check for updates, it
asks the update server for the latest version. If it is newer than the current one, it
downloads and installs it. By using Burp Suite to alter the answer to the current
firmware request, we get the device to try and download the new firmware file.
Now we just need to go and download the current version file ourselves, the link
is http://upg.videoipcamera.cn/upg/14/00/npcupg_14.00.00.52.bin.

The structure of the firmware Fig. 8 shows the general structure of the
firmware file. It has three parts: a header, a file system and a binary. The header
contains the sizes of the other parts of the file, a checksum and a version number.
The JFFS2 file system contains all necessary files and the main executable, called
npc, it gets mounted on the camera and replaces the old files. The executable
binary is used as part of the update process.

Sricam Firmware Format

8 Byte

0 3 4 7

0 00 00 00 00 JFFS2 FS size

Header
1 ELF binary size

2 DES encrypted MD5 hash

3 firmware version

…

X JFFS2 Filesystem

…

…

Y 32-bit ELF binary

…

�1

Fig. 8. Format of the firmware file. It consists of a header, a file system dump and an
executable.

Altering the firmware As a proof of concept, we edited a boot script so that
it starts the telnet daemon (see Fig. 9). We did this directly on the camera, so
in order to create the JFFS2 dump, we only needed to dd from the mounted
device to a file. Now we just stitch the JFFS2 file together with the 32-bit ELF
binary and the header from the original firmware file. JFFS2 appends the most
recent changes to the end of the file, so our changed file system dump is larger
than the old one. Hence, we will have to update the size in the header. Also

http://upg.videoipcamera.cn/upg/14/00/npcupg_14.00.00.52.bin


part of the header is a checksum value. When we first created a firmware file, we
did not know how it is computed and tried several checksum algorithms without
successfully recreating the needed hash.

/npc
dhcp.script <–
gwellipc
img

...
language

...
minihttpd.conf
mtd

...
vg_boot.sh
vg_boot_autofocus.sh

npc
patch

...
readme.txt
sound

...
upgfile_ok
version.txt

Fig. 9. Content of the file system left. On the right, the added line to create the telnet
back door.

Getting the camera to download our firmware The firmware is not signed
and the update process is built on plain HTTP. So we need to route the camera’s
update request to our web server. This could be achieved by adding an iptables
rule on our access point (which is what we did in our local setup) or by changing
the DNS settings of the camera (which is done in the demo in Section 5). A
simple python script sets up a web server and answers update checks with newer
versions and serves our firmware file. The “do firmware update” section in Fig. 13
shows this process.

Remaining debug output got us the checksum When the camera updates
on a firmware file with an incorrect checksum, it prints (to its serial output)
“Md5 err!”. However, during the installation of an original firmware, the camera
prints several numbers. These numbers turn out to be bytes in the firmware
header. So we checked the disassembled code in the npc binary using IDA in
order to understand how the checksum is calculated. The assembly code does



Fig. 10. Upper screen shot shows the code from checking the firmware file to the MD5
error. The lower one shows part that is marked as check_file. It checks the checksum
byte by byte and prints each byte if it is correct. Changing the registers (to the one in
red), makes it print the expected byte.



reveal some strings containing “MD5”, but also does something else, that we
could not figure out easily. Thus, we focused on the bytes that are printed –
maybe it can tell us the correct checksum. We searched for the error message
and the HTTP firmware download request strings. Fig. 10 shows the decompiled
code of the npc binary. The code in the upper image calls a checking function
and the lower image shows the checking function. It compares each byte of the
checksum in the header with the expected byte, byte by byte. If the bytes match,
the byte given in the header is printed to stdout.

So, as indicated in the lower image with the red circles, we patched code
slightly to always print the expected byte (see Fig. 11). Finally, we ran the
update with our malicious firmware and got the valid checksum calculated and
printed to the serial output of the camera.

k i l l −9 [ process_number ]
p r i n t f ’\ x50 ’ | dd bs=1 seek=172469 count=1 o f=/npc/npc conv=notrunc
p r i n t f ’\ x02 ’ | dd bs=1 seek=172488 o f=/npc/npc count=1 conv=notrunc
p r i n t f ’\ x05 ’ | dd bs=1 seek=172536 o f=/npc/npc count=1 conv=notrunc

Fig. 11. Commands to patch the npc binary on the camera. The patches need to be
done quickly after killing the process, because the system reboots.

Later, we found this Github repository for Gwell Media firmwares8, that
contains code to compute the checksum. It turns out to be a MD5 hash, DES
encrypted in ECB mode. Had we known that the MD5 hash is encrypted using
the exact same key as in Fig. 7, we could have saved some time and effort.
Nevertheless, by patching the npc binary, we gained further insights in how the
camera is working.

4.7 Authentication

The upper left box of the attack surface matrix in Table 1 deals with the Authen-
tication mechanisms of the camera and the servers. We can observe two different
kinds of authentication happening. When setting up his camera, the user has to
add it to his sricam account specifying device ID and device password that are
printed on a sticker on the device. The device ID is a six-digit integer and the
default device password is 888888 for all devices.

On which ever smart phone he later logs into this sricam account, he will
be able to access this device. That means we have to distinguish authenticating
against Sricam servers to login and authentication that has to happen when
control commands are send to the device.

8 https://github.com/zzerrg/gmfwtools

https://github.com/zzerrg/gmfwtools


Against Sricam login servers When logging into the account the app sends
a HTTP POST request with the mail address and the MD5 hash of the users
password to the login servers and if they are valid gets a session ID as response.
It then requests the contact details for all devices associated with the account
and that send to the server when the device was added. For each device this list
consist of the device ID, the display name and the device password encrypted
with the user ID of the account (see Fig. 12).

Fig. 12. The HTTP requests and responses when logging into a Sricam account to use
the app.

A pre-compiled library is used for decryption within the app via
contact.contactPassword = P2PHandler.getInstance().HTTPDecrypt(str,
contactPwd, 32). With this contact information the app is then able to control
the device.

Beyond the login being plain HTTP and that it should easily be possible
to run the decryption method with any potentially sniffed contact information,
we did not find a vulnerability in the login functionality that would allow an
attacker to access other accounts. Therefore we decided to take a look at how
the app uses the contact information to control its linked devices.

In control pakets to the device The control of the camera – i.e. changing
settings, moving the device, viewing the feed, ect... – happens via a proprietary
UDP protocol. When the smart phone is in the same local network as the camera,
both can communicate directly. If they are in different networks, the connection
is relayed via the Sricam servers. As soon as the camera boots up, it starts
sending UDP pakets to the servers and continues sending regularly to keep the
entry in the NAT table of the router alive. This way the relay server can contact
the device by just using the existing connection. No port forwarding is necessary
at the router.

The pakets send in the local network contain a header that tells if they are
a request or response and if they were send by the app or by the camera. Then



follows a command ID that falls into a different 1000 integer interval for each
command (e.g. 50000 − 60000 for MESG_SET_IP_CONFIG). The rest of the paket
we call the payload and it contains data specific to the command. In the payload
there may be a value for authentication included, but if so, it depends only on
the device password and maybe the account ID, so it can be reused for different
devices with the same password.

If the connection is relayed, 24 byte are added in front of the local paket. This
includes the ID of the account sending or receiving the paket and the device ID.
This structure is illustrated in Fig. 14. The app does not need to know the IP
address of the camera, because the relay servers decide where to send the paket
based on the included device ID. Also, the commands are just redundantly send
to each of the for relay servers and the camera just answers the first one it gets
to all relay servers as well.

Fig. 13. Communication flow depending on the network setup.

We believe byte 12 to 23 to be some authentication value that depends on the
device password and maybe the account ID. This value is modified by the relay
server when he recieves a paket from the app or camera and forwards it to the
other party (see Fig. 13). We are sure, that it does not depend on the device ID,
because the same paket can be send to the relay server with a different device
ID and will be relayed to the new device – given that the second device has the
same password the paket will be accepted and it’s action executed.

Given a target password, we can create control pakets for other devices by
setting our device password accordingly, then executing the action on our device
and sniffing the paket. After copying it into our python script python_client.py
and replacing the bytes with our device ID with the target device ID, we can
send the paket to the relay server. It will be forwarded to the target device that
will execute the encoded action.



Most of this analysis was done via trial and error by capturing pakets in
Wireshark, copying the UDP data as bytes into python and then modifying and
resending them via a UDP socket.

Sricam Packet Format

8 Byte

0 3 4 7

0 10 03 ? ? Account ID
External 
Packet1 Device ID

2 Auth-Secret

3 A B ? ? Command
Local 

Packet4 Payload length

5 Payload

A: Request or Response

B: Sender: Camera or App/Server

�1

Fig. 14. Packet format of Sricam’s proprietary communication protocol.

Device enumeration When a user first adds a device to his app, he is presented
a window to change the password of the device. As this window contains a
skip button, we suspected that a significant portion of users does not change
the password. In contrast to owning all, for a bot net it is more important to
own enough devices. After more or less understanding how control pakets are
crafted, we therefore decided to try and enumerate all possible device IDs with
the standard password.

In the main window of the app all devices associated with the account are
listed, each with green, yellow or red dot next to it, indicating if the device is
currently online. When refreshing this view, a paket containing all the device
IDs is send to each relay server and the answers include per device if it is online.
These pakets can contain up to 128 device IDs and can be replayed with other
device IDs, independently from their passwords. As a online device does not
necessarily appear online for every server their answers have to be aggregated.
With our python script find_devices.py, we were able to enumerate all possible



device IDs from 0 to 999999 in one hour and found 140741 valid IDs of online
devices.

Password enumeration The next step was to investigate which of these device
use the default password. In the Java class with the command IDs we found
a message called MSG_ID_CHECK_DEVICE_PASSWORD. A Wireshark filter for udp
pakets that identified pakets which would have a command ID in the respective
range helped us find out that such pakets get send as soon the settings for
a camera are opened in the app. Changing the password of our device and
replaying the original check password paket helped us identify which byte of the
answer indicates if the password is correct. Checking if a password is correct for
a specific device ID is now as easy as setting our device to the specified password,
capturing such a paket and resending it to the relay server with a changed device
ID. We wrote a threaded python script that checks all of the online device IDs
for the default password and collects the results. While running this script, it
was necessary to open an access point on the laptop and connecting the smart
phone with the running app to it. Probably to make it look like the requests
come from a legitimate app.

We found that 63029 devices are accessible via the default password.

4.8 Potential consequences

Thereby we could access the video feed of 63029 IP cameras of which a significant
portion will be in private homes. We could also record their audio and send our
own audio to their speakers.

Another possibility is harvesting SMTP credentials of the users who enabled
the mail alarm feature in these cameras.

Last but not least, we can automate remotely installing our malicious firmware
update on all of these devices like it is demonstrated in Section 5 and build a
63029 devices bot net. With the attack on DynDNS in 2016 – that rendered
many major web sites unusable – being reported to have up to 100000 devices
involved, such a bot net could cause incredible damage.

4.9 Summary, mitigations and conclusion

This chapter summarizes found attack vectors and what assumptions they make,
followed by mitigations we propose and conclusions we have drawn.

Summary Plain HTTP is used for updates, logging in and getting device con-
tact information. Communication between app and Camera is done mostly unen-
crypted via a proprietary UDP protocol. This includes the WiFi credentials for
the network the camera is connected to. If mail alarm is set up, the users SMTP
credentials are transmitted encrypted, but with a static key that is known. All



this information can be obtained by an attacker if he is able to wiretap com-
munication between device or app and one of the relay servers. It can also be
obtained when knowing the device ID and device password.

An attacker who is able to wiretap can also obtain the information necessary
to use and control the device. He can initiate a firmware update and if he is
active man in the middle somewhere in front of the device, can simulate that a
new version is available and deliver a malicious firmware update with arbitrary
commands that get executed as root on the device. To generate such a firmware,
he adds these commands to the shell script dhcp.script that is part of the
file system that is delivered via the firmware. It gets copied to the device when
updating and is then executed at every boot.

A malicious firmware can also be installed without having man in the middle
capabilities, when the attacker knows device ID and device password of his target
or is able to wiretap a valid control paket for it. This is done by querying the
devices IP settings, setting the same settings with an own IP as DNS server and
then initiating an update. This can all be done without knowing the devices IP
address. By setting the password of his own device, the attacker can generate
valid control pakets for this password and then changes the device ID in the
pakets to the target and sends them to the relay server. When the device queries
the DNS server for the update domain, an own IP can be answered with a fake
update server that serves the malicious firmware.

The paket that is send when refreshing devices in the main view of the
app can be recorded and replayed with arbitrary device IDs independently of
their device passwords. Because device IDs are just six digits, it is possible to
enumerate all possible device IDs in one hour. We found 140741 valid IDs of
which each represents an online device.

Every device is delivered with a sticker with the device ID and the standard
password 888888 on the bottom. When adding the device to his account, the user
is asked to change the password, but can skip doing it. By setting his device to a
specific password and pressing on its settings in the app, an attacker can capture
a check password paket. By resending it to a relay server with a changed device
ID he can check an arbitrary device for his chosen password. By enumerating all
online devices, we found 63029 devices that use the default password. Besides
the privacy and data harvesting implications we also have all the tools necessary
for turning them into a bot net by automatedly installing a malicious firmware
on them – even behind router firewalls with out needing to now their IP address.

Mitigations The design of the cloud protocol and infrastructure is fundamen-
tally flawed and requires extensive review and rethought. We will just summarize
our most important but not exhaustive mitigation ideas.

The first mitigation would be the use of transport layer security to circum-
vent information sniffing. This would be HTTPS for the login and updates and
Datagram TLS for the UDP protocol. Also, we could imagine a scenario where
an attacker impersonates a camera against the server and then gets the control



pakets meant for it. We did not investigate this idea, but if it is not already the
case, the device should identify itself utilizing the device password.

Transport security would also circumvent impersonating the update server
and delivering a malicious update. In context of defense in depth, firmware im-
ages should also be signed by asymmetric cryptography. The private key used
to sign the file could be kept at the company and does not need to be on the
device for verification.

To mitigate enumerating device IDs, they should be chosen uniformly at
random with higher entropy. The initial password should have be individual per
device – best uniformly random – and longer. One can think about requiring the
user to change it without the possibility to skip after adding it to his account.

How the cloud functionality is designed provides everyone who has access to
the central servers with access to all information and devices. This provides high
abuse potential and requires a lot of trust. If it will be this way in the future as
well, there are many better option for the mail alarm than requiring the user to
provide his own SMTP credentials.

As WiFi settings mostly set during the local setup when the device is con-
nected via Ethernet and in the came local network as the smart phone, it is not
necessary to transmit the WiFi credentials to the central servers and it should
be kept locally.

Further our device and password enumeration showed that there is no (work-
ing) rate limiting or monitoring in place, although it is important for infrastruc-
ture with high abuse potential.

Conclusion Our research did not require any highly sophisticated tools or secret
knowledge. A better implementation would have definitely been possible; by just
investing some more time and resources, our attacks could have been prevented.
Still, the mitigations are not easily implemented as they require fundamental
changes in the cloud protocol, infrastructure and manufacturing process.

Even if the vulnerabilities are patched, there will be other devices vulnerable,
because there is a demand for as-cheap-as-possible solutions. In combination
with the high numbers of IoT products that are currently and newly will be
connected to the Internet, a realistic view on IoT security has to incorporate
mass-compromised devices.

Because just blaming the vendors of such insecure devices did not proof as a
working solution, we also need to establish reliable DDoS protection – either at
the target or at provider level.

5 Demo, Scripts and Tools

5.1 Demo

We implemented two demonstrations to illustrate some of the vulnerabilities
we found. They are located in demo1_sniffing and demo2_firmware_update
under the demo folder, each with a readme.md markdown file that explains the



usage. The first demo9 opens a wireless access point that the camera will connect
to, then decrypts and displays all SMTP credentials that are transmitted. The

Fig. 15. Process of exploiting a camera by remotely installing own firmware. AP being
the attacker who reuses an authentication secret from an own device with the same
password.

second demo10 demonstrates remotely installing a malicious firmware update by
just using it’s devices ID and pakets created with an own device and the targets
password. Fig. 15 illustrates how this process works while ?? shows the network
setup that is used. Even though the camera connects to the laptops WiFi in
case of the demo, this exact same script would also work with the device being
in a network not under the attackers control and without him knowing the IP
9 Screencast under https://owncloud.hpi.de/index.php/s/Ogr6WwuL4VBcuNI

10 Screencast under https://owncloud.hpi.de/index.php/s/NwktzfqoeCE0BrQ



address of the device. The only thing necessary would be to host the fake DNS
and update server in the Internet. We verified this by trying it out, but went with
a local setup for the demonstration to keep it self-contained and future-proof.

Fake 
DNS 
Update

Api ServerRouter

Fake 
DNS 
Update

Api Server
Router

Fig. 16. Network structure for the firmware update demo. The camera is connected to
the laptops Wifi to be able to access the fake DNS and update server.
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Fig. 17. The network setup how it would be possible as well with the Fake DNS and
upgrade server in the Internet.

5.2 Scripts and tools

To give and impression what we used for our investigations, we provide a short
list of tools (see Fig. 18) and self written scripts (see Fig. 19) we used.

12 https://github.com/Crypt0s/FakeDns
12 https://github.com/buckyroberts/Python-Packet-Sniffer



strings to find strings, symbols and method names in an executable
xxd to see a hex view of the bytes in a file
dd dump filesystem to file, read and write to specific positions in a file
binwalk analyze binary file to see from what files it is made of
jadx-gui decompile Android App
Wireshark sniff all TCP and UDP packets, track connections and filter for bytes in

UDP packets
BurpSuite proxy HTTP requests and edit them on demand to see how the system is

behaving
IDA decompile binary executable, investigate execution flow, search for strings
FakeDNS11 for simulating a DNS server by just replacing one domain with our IP and

forwarding the rest.
Python-
Packet-
Sniffer12

for wiretapping and analysis the pakets in python. Used in demos and
device enumeration.

Fig. 18. Generally available tools that we used for our analysis.

utilities.py implements some paket and byte conversions, as well as func-
tions to send udp pakets.

mail_alert/helper.py supplies the exact DES algorithm that is used on the camera
and the app.

helpers/packet_sniffer helps to create proper Ethernet-, IPv4- and UDP-packets.
extract_mail_account.py checks if a packet contains email credentials by checking for

magic bytes. If there are, it extracts them.
sricam_sniffer.py sets up a WiFi access point, when camera is connected,

sniffs udp traffic and extracts email credentials based on “ex-
tract_mail_account.py”.

sricam_packet_info.py takes a UDP packet as input and prints all known in-
formation of that packet if it belongs to the camera-app-
communication.

device_enumeration folder containing scripts to enumerate devices and check
them for specific passwords.

dns_and_http_server.sh starts a DNS server, that proxies all DNS request and re-
sponds a fake server when the Sricam update server is re-
quested. It also starts this python web server for handling
the camera’s update process.

find_firmware_links.py enumerates links for possible firmware versions
telnet_dump.py dumps files from the device by utilizing telnet, cat and base64

encoding

Fig. 19. A selection of scripts that we created for investigation or demonstration pur-
poses. They can be found under their name in the repository. When there were scripts
with similar names, we added the directory to prevent confusions.
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